Compactifications of symmetric and locally symmetric spaces
نویسندگان
چکیده
منابع مشابه
Finsler bordifications of symmetric and certain locally symmetric spaces
We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X “ G{K of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable G-invariant Finsler metric on X. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces X{Γ for arbitrary discrete subgroups ...
متن کاملTransference principles and locally symmetric spaces
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces Tn = SO(n)\SL(n,R)/SL(n,Z) with n ≥ 2, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space Tn and the wa...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملGeometric zeta-functions of locally symmetric spaces
The theory of geometric zeta functions for locally symmetric spaces as initialized by Selberg and continued by numerous mathematicians is generalized to the case of higher rank spaces. We show analytic continuation, describe the divisor in terms of tangential cohomology and in terms of group cohomology which generalizes the Patterson conjecture. We also extend the range of zeta functions in con...
متن کاملEquivariant Torsion of Locally Symmetric Spaces
In this paper we express the equivariant torsion of an Hermitian locally symmetric space in terms of geometrical data from closed geodesics and their Poincaré maps. For a Hermitian locally symmetric space Y and a holomorphic isometry g we define a zeta function Z(s) for <(s) 0, whose definition involves closed geodesics and their Poincaré maps. We show that Z extends meromorphically to the enti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2002
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2002.v9.n6.a3